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ABSTRACT 
 
 
 
Damping of welded structures is a subject of great interest and application for the 

navy as relates to ship shock survivability and acoustic transmission of ship noise.  The 

purpose of this research is to study the effects of welding on damping.  A generic model 

of a warship’s hull structure was used to study damping effects.  The model’s natural 

frequencies and mode shapes were calculated using a finite element model prior to model 

testing.  The frequency response and natural frequencies of the model were determined 

experimentally by exciting the model and measuring the response throughout the 

structure using Frequency Response Functions (FRF’s).  The results were compared with 

the finite element modeling.  The damping ratio of the model in relation to position from 

excitation was calculated using the half-power point method and then a more detailed 

analysis of frequency dependent damping versus position was made using modal 

parameter extraction using the Complex Exponential Method. 
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I. INTRODUCTION  

A. BACKGROUND  
Damping of ship structures is a subject of great interest and application for the 

navy as it relates to ship shock survivability and acoustic transmission of ship noise.  The 

concept of damping can be thought of as the culmination of various energy dissipation 

mechanisms that remove mechanical energy from a vibrating system. The energy 

dissipation mechanisms can be broadly categorized into two categories, hydrodynamic 

effects and structural damping of the ship hull.  While some study has gone into the 

hydrodynamic effected hull damping, little study has gone into structural damping in the 

ship hull.  The ship system has many proposed energy dissipation sources such as welded 

joints and stiffeners, long cable trays, hangers, snubbers, etc.  This thesis focuses on the 

effect of welds in the ship’s structure to the total damping of the ship structure system. 

Betts and his colleagues conducted a survey of internal hull damping, and they 

concluded that welding effects together with stress concentrations were among the most 

important sources of hull damping in deformation modes [Ref 1].  Figure 1 shows a 

typical plot for the damping properties of mild steel in terms of the specific damping 

strain energy, for a wide range of stress amplitudes. 

 

 
Figure 1.  Unit Damping Energy vs. Stress Amplitude (from Ref 7) 

 
Damping curves for other metallic materials generally have similar forms to those 

of mild steel.  As shown in Figure 1, as stress amplitude increases, damping energy 
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increases.  The primary effect of welding is from contraction of the weld upon cooling.  

This contraction causes tensile yield stresses in the material parallel and adjacent to the 

weld.  The area of residual tensile yield stress at fillet welds usually extends for 

approximately 3 to 4 ½ thicknesses on either side of the weld, leaving some 10-15% of 

the plate material at tensile yield stress [Ref. 1].  Betts suggests that the residual stresses 

will frequently be in the plastic region and that vibratory motion of the weld will cause 

plastic strain, considerably increasing the damping of the structure.  Imperfect welds 

where there are gaps between the materials was also believed to give rise to dry friction 

between the materials creating another source of damping. 

In thesis work done by Carey [Ref. 2] research was conducted of the welding 

effects on damping in several beam-stiffened plates.  At frequencies below 500 Hz, the 

trend found was that welding caused an increase in damping in the plates.  The results of 

these tests however were not consistent and not precise enough to quantify the damping 

attributed to weld effects.  In a continuation of work done by Carey, this thesis continues 

examination of weld effects on damping in a more complicated structure that contains 

larger amounts of welded surface, better representing a ship’s hull. 

 

B. OBJECTIVES 
The objective of this research was to investigate the damping effects of welds in a 

beam-stiffened plate gaining insight on damping effects of welds in a ship’s hull 

structure.  A more complete understanding of structural damping in ship structures may 

improve computer simulations of ship vibration in ship-shock trials and produce 

opportunities to reduce acoustic transmission of ship noise. 
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II. THEORY 

A. DAMPING MODEL ASSUMPTIONS 
As previously suggested in the background section, the origins of ship structural 

damping are believed to lie in material hysteresis and dry friction at joints.  Hysteretic 

damping comes from imperfections in real materials that cause energy to be absorbed 

during cycling, while Coulomb damping comes from the dry friction at joints.  

Recognizing the damping mechanisms of the system come from a combination of 

Hysteretic and Coulomb as well as Viscous damping, a fairly accurate mathematical 

representation can be made by assuming only viscous damping.  This assumption makes 

calculation of damping properties of the model less burdensome while still maintaining a 

good approximation to the true total damping of the model [Ref. 3]. 

Another assumption made to make damping calculations less burdensome was to 

assume the system experiences linear proportional damping, the damping of the system 

being linearly proportional to the mass and the stiffness of the system.  For a multi-

degree-of-freedom system such as a ship hull, these assumptions lead to the following 

damping equation; 

    [ ] [ ] [ ]C Mα β= + K

x

    (1) 

These assumptions form the basis for the model by which the damping values for 

the ship hull model were calculated. 

 

B. VISCOUS DAMPING 
Viscous damping can be expressed by the following equation 

    dF c= �      (2) 

where c is a constant of proportionality 

The equation of motion for a damped single degree of freedom (SDOF) system 

experiencing free vibration is: 

   mx ( )cx kx F t+ + =�� �      (3) 

Where  = Mass constant m
  = Damping constant c
  = Stiffness constant k
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 x  = Displacement of the system 
 x�  = Velocity of the system 
 x��  = Acceleration of the system 
  = Force applied to the system ( )F t
 
The homogenous solution ( ( ) 0F t = ) of the differential equation of motion, 

(equation (3)) is found by assuming stx e= .  Substituting into the differential equation 

yields: 

   ( 2 ) stms cs k e 0+ + =      (4) 

which is satisfied for all values of t when 

   2 0c k
m m

s s+ + =      (5) 

the two roots of this characteristic equation are: 

  
2

1,2 2 2
c cs
m m

 = − ± − 
 

k
m

2

     (6) 

Thus the general solution of the differential equation is: 

   1s t s tx Ae Be= +      (7) 

where A and B are constants evaluated from the initial conditions of displacement and 

velocity at time zero ( (0)x and (0)x� ).  Substituting equation (6) into equation (7) 

produces: 

  ( ) ( )2 2( / 2 ) / ( / 2 ) /( / 2 ) c m k m t c m k m tc m tx e Ae Be
−−  

= + 
 

−

)

  (8) 

When the damping term  is more than( 2/ 2c m ( )/k m

/ 2

cc

, the over damped case will 

occur, the exponents in (8) being real numbers and thus leading to no oscillations.  If the 

damping term is less than , the exponents will become imaginary numbers leading 

to the under damped case and oscillatory motion.  When ( )  and the radical 

is equal to zero the case is known as critical damping,  and leads to one oscillation 

cycle 

( /k )m

2 /c m k m=

   2 2 2c n
kc m m k
m

ω= = = m     (9) 
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Any damping can be expressed in terms of the critical damping by a non-

dimensional number ζ , the damping ratio, where 
c

c
c

ζ = .  Hence equation (6) becomes 

   ( )2
1,2 1 ns ζ ζ ω= − ± −     (10) 

and the differential equation of motion (equation (3)) can now be expressed 

   12 n n ( )x x
m

ζω ω+ + =�� � F t

( )

    (11) 

[Ref. 3] 

 

C. FORCED VIBRATION 

To accurately calculate the damping in a structure, its frequency response must be 

determined in order to obtain the natural frequencies of the structure.  In any liner system, 

there is a direct liner relationship between the input signal and the output signal; the ratio 

of this relationship is termed the Frequency Response Function, H(ω). 

As previously stated, the equation of motion for a single degree-of-freedom 

system (1-DOF), is: 

   mx cx kx F t+ + =�� �      (3) 

To solve the differential equation, we let the input ( ) i tF t e ω= .  The steady-state output 

will be ( ) i tx H e ωω= , where ω  is the frequency of the applied force and t is time and 

( )H ω  is a complex function. The steady-state output equation is differentiated, to get 

expressions for the velocity and acceleration.  These expressions for displacement, 

velocity and acceleration are substituted into equation (3) and canceling like terms the 

following is obtained: 

    (     (12) 2 )m ic k Hω ω ω− + + =( ) 1

Then the frequency response equation becomes: 

2

1( )H
k m ic

ω
ω ω

=
− +

    (13) 

By factoring the stiffness from the denominator and substituting the following equations 

into equation (3), 
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2
n

k
m

ω =  
2c

c c
c km

ζ = =     (14) 

 nω = Natural frequency 
 ζ =  Damping ratio 
 Critical damping coefficient cc =

the frequency response can then be written in its classical form: 

2
1( )

1 2
n n

H
i

ω
ω ωζω ω

=
   − +   
   

    (15) 

For a 1-DOF system, there is one natural frequency and one damping ratio 

associated with it.  For multiple degrees-of-freedom (N-DOF), there are as many natural 

frequencies and damping ratios as there are DOF.  Modal analysis can be used to analyze 

a N-DOF system.  The equations of motion for a N-DOF system in matrix form is: 

[ ]{ } [ ]{ } [ ]{ } { }M x C x K x F+ + =�� �     (16) 

The mass, damping, and stiffness matrices are n x n matrices, where n is the number of 

DOF in the system.  The force, displacement, velocity and acceleration vectors are n by 1 

in size.  Each element in the vectors corresponds to a DOF of the system.  The mass and 

stiffness matrixes are symmetric and may have some form of coupling.  The first step to 

analyze the multi-DOF system is to determine the natural frequencies and mode shapes 

by analyzing the free response of the system.  The general form of the free response of 

motion for a N-DOF system is as follows: 

[ ]{ } [ ]{ } { }0M x K x+ =��     (17) 

For each of the DOF we use i tx Xe ω=  and equation (17) reduces to: 

{ }2 0ij ijK M Xω −  =  where i= 1…n  and j = 1…n   (18) 

The indices i and j correspond to the element locations in the mass and stiffness matrices.  

From equation (18), a solution of the displacements is { } 0X =  if the matrix 

2
ij ijK M ω −   is invertible.  This solution, however, is the trivial solution.  To ensure that 

the matrix is not invertible, the determinant of the matrix is forced to equal zero.  By 

forcing the matrix determinant to equal zero, the matrix will be singular and an inverse 

matrix does not exist, thus a non-trivial solution can be found.  The eigenvalues found for 
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the matrix are the system’s natural frequencies and the eigenvectors found are the 

system’s mode shapes.  The mode shapes of the system illustrate how the system 

responds to an excitation at the corresponding natural frequency.  The system’s modal 

matrix is formed by placing the mode shape vectors as the columns of the matrix. 

[ ] { } { } { }1 2 .... nφ φ φ Φ =       (19) 

Φ is the modal matrix and φ  are the mode shape vectors.  The modal matrix will have 

the same number of the rows as there are DOF’s. To decouple equation (16), we assume a 

set of modal coordinates: 

{ } [ ]{ }x q= Φ , { } [ ]{ }x q= Φ� � ,  { } [ ]{ }x q= Φ�� ��    (20) 

next substitute equation (20) into equation (16) and multiply both sides by the transpose 

of the modal matrix. 

[ ] [ ][ ]{ } [ ] [ ][ ]{ } [ ] [ ][ ]{ } [ ] { }T T T TM q C q K qΦ Φ + Φ Φ + Φ Φ = Φ�� � F   (21) 

Using the orthogonal properties of the modal matrix and the symmetric properties of the 

mass, damping and stiffness matrix results in the following equation: 

[ ]{ } [ ]{ } { } [ ] { }T
ii ii iim q c q k q F + + = Φ 

�� �� � �    (22) 

The new modal mass, damping, and stiffness matrixes are diagonal.  As a result, the 

modal coordinates are decoupled and can be solved for each Degree of Freedom in the 

same manner as a 1-DOF system.  Equation (22) can be further simplified by multiplying 

both sides by the inverse of the modal mass matrix to get: 

{ } [ ]{ } { } { }22 ii ii iiq q qζ ω ω + +  
��� � F=     (23) 

where{ } [ ] [ ] { }1 TF m F−= Φ� � . 

[Ref. 3 and 4] 

 

D. DAMPING CALCULATION: HALF-POWER POINT METHOD 
The damping ratio can be calculated experimentally by using the half-power point 

method.  The half-power point method determines the damping ratio by examining the 

sharpness of the resonance peak.  The following equation is the magnitude of the 

frequency response: 
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2 22

1

1 2
n n

H

ω ωζω ω

=
      − +           

   (24) 

At resonance, ( 1nω ω = )  the magnitude of the frequency response is 1
2resH
ζ

= .  Taking 

the square of both sides of equation (24): 
2

2 22

1 1
2

1 2
n n

ζ ω ωζ
ω ω

 
= 

        
 − +     
      

   (25) 

or 

( ) ( )
4 2

2 22 1 2 1 8 0
n n

ω ωζ ζ
ω ω
   

− − + −   
   

=  

Solving for ( )2
nω ω results in the following equation: 

 ( )
2

21 2 2 1
n

ω 2ζ ζ ζ
ω
 

= − ± − 
 

   (26) 

Assuming that 1ζ � , the higher order terms can be neglected, resulting in the following 

equation: 
2

1 2
n

ω ζ
ω
 

= ± 
 

     (27) 

Letting 1ω  and 2ω  correspond to the roots of equation (27) and 2 1ω ω> , equation (27) 

becomes: 
2 2
2 1 2 1

24 2
n n

ω ω ω ωζ
ω ω

 −
= ≅ 

 

−
     (28) 

The damping ratio can now be determined by rearranging equation (28): 

2 1 2

2 2n n

1f f
f

ω ωζ
ω
− −

= =      (29) 

Figure 2 illustrates how the half-power point method is utilized. [Ref. 1] 
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   Figure 2. Half-power point method [Ref. 1] 

 

E. DAMPING CALCULATION: COMPLEX EXPONETIAL METHOD 
The Complex Exponential Method (CEM) is used to extract modal parameters of 

a system directly from the system response data.  The Receptance FRF 

(displacement/force) ( )α ω , of a viscously damped general MDOF system can be 

represented as: 
*

*
1

( )
N

r r

r r r

A A
j s j s

α ω
ω ω=

 
= + − − 
∑ ; where 21r r r rs j rω ζ ω ζ= − + −   (30) 

    or 

  
2

1

( )
N

r

r r

A
j sω=

=
−∑α ω  ; , *

r rs s→ *
r rA A→ , for  r N>

and Mobility (velocity/force) Y ( )ω  can be related to ( )α ω , 

( ) ( )Y jω ωα ω=     (31) 

From classical theory, the corresponding Impulse Response Function (IRF),  

can be obtained by taking the Inverse Fourier Transform (IFT) of the Receptance 

( )h t

( )α ω : 

    
2

1
( ) r

N
s t

r
r

h t A e
=

=∑     (32) 

The velocity form of IRF can be expressed as: 

    
2

1
( ) r

N
s t

r r
r

h t A s e
=

=∑�     (33) 

Then the sampled velocity data set can be expressed as follows: 
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0 1 2, , ,...., (0), ( ), (2 ),....., ( )qh h h h h h t h t h q t= ∆ ∆� � � � � � � � ∆

V

    (34) 

Using the following simplified notation, 

         (35) rs t
re ∆ →

Thus for the jth sample data of equation (33) is expressed as: 

 ( )jh h j t= ∆� � ( )r r rA s V j t= ∆
2 2

1 1

N N

r r r
r r

A s V
= =

=∑ ∑     (36) 

When extended to the full data set of q samples, equation (36) gives: 

     (37) 

2 2

0 1 1 2 2 2 2

1 1 1 1 2 2 2 2 2 2

2 2 2
2 1 1 1 2 2 2 2N

N N

N N N

N N

h s A s A s A

h V s A V s A V s A

h V s A V s A V s A

= + + +

= + + +

= + + +

� "
� "
� "

           #             #                      #  #

  
2 21 1 1 2 2 2 2N

q q q
q Nh V s A V s A V s A= + + +� " N

Given that the number of sample points q exceeds 4N, this equation can be used 

to set up an eigenvalue problem and the solution yields the complex natural frequencies 

contained in the parameters V1, V2, etc…. 

 Multiplying each equation in (37) by a coefficient, jβ  forms the following 

set of equations: 

 

2 2

0 0 0 1 0 2 0 2

1 1 1 1 1 1 2 2 1 2 2
2 2 2

2 2 2 1 1 2 2 2 2N

N

N N

N

h A A A
h V A V A V A

h V A V A V A

β β β β
β β β β

β β β β

= + + +
= + + +

= + + +

"
"
"

    (38) 

           #             #                      #  #

  
2 21 1 2 2N

q q q
q q q q q Nh V A V A V Aβ β β β= + + +"

Adding all equation in (38) results in: 

   ∑ ∑     (39) 
2

0 1 0

(
q qN

i
i i j i j

i j i

h Aβ
= = =

= ∑� )Vβ

The coefficients jβ  are taken to be the coefficients in the equation, 

     (40) 2 3
0 1 2 3 0q

qV V V Vβ β β β β+ + + + + ="

for which the roots are V V . 1 2, , , qV…
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The values of the β  coefficients are sought to determine the roots of (40), the 

values of V  and thus the system natural frequencies.  With q being the number of 

degrees of freedom of the system model, we can set these two parameters to the same 

value, i.e. let q=2N. 

r

The equation (40) can now be expressed as: 

   
2

0

0
N

j
j r

j

Vβ
=

=∑ ; for r=1, 2N    (41) 

and thus every term on the right-hand side of equation (39) is zero. 

   
2

0

0
N

i i
i

hβ
=

=∑       (42) �

rearranging equation (42), by setting 2 1Nβ =  

          (43) 
2 1

2
0

N

i i N
i

h hβ
−

=

= −∑ � �

Repeating the process from (34) to (43) using different sets of IRF data points and 

further choosing new data sets that overlaps, successive applications of this procedure 

lead to a full set of 2N equations: 

 

00 1 2 2 1 2

11 2 3 2 2

2 12 1 2 2 1 4 2 4 1

N N

N

NN N N N N

h h h h h
h h h h h

h h h h h

β
β

β

−

+

−− + −

   
   

1N

−

 
 

    = − 
    
    
      

� � � � �"
� � � � �"

## # # % # #
� � � � �"  

  (44) 

    or 

   { } { }2 12 2 2 1NN N N
h β

××
h

×
       (45) = −� �

The unknown coefficients { }β  can be found from equation (45).  The values of 

 can now be determined using equation (40) and subsequently the system 

natural frequencies can be found using the relationship. 

1 2 2, , , NV V V…

    rs t
r eV ∆=      (35) 

Using equation (37), corresponding modal constants,  can be 

calculated. This may be written as: 

1 2 2, , , NA A A…
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1 1 0

1 2 3 2 2 2 1
2 2 2 2

1 1 1 2 3 3 2

2 1 2 1 2 1 2 1
1 2 3 2 2 2 2 1

1 1 1 1

N

N

N N N N
N N N N

A s h
V V V V A s h
V V V V A s h

V V V V A s h− − − −
−

    
    
         =   

     
     
         

�"
�"
�"

# # # % # # #
�" 

  (46) 

     or 

    [ ]{ } { }V A h=      (47) 

[Ref. 5] 

 

F. VERIFICATION OF EXTRACTED MODAL PARAMETERS 

The modal parameters calculated from the above procedure can be verified by 

comparing synthesized time histories to the originally measured time histories.  From 

equations (30) and (31), 
*

*
1

ˆ( )
N

r r

r r r

j A j AY
j s j s
ω ωω
ω ω=

 
= + − − 
∑ ;      21r r r rs j rω ζ ω ζ= − + −   (48) 

or 
2

1

ˆ( )
N

r

r r

j AY
j s
ωω
ω=

=
−∑ ;  , , for     (49) *

r rs s→ *
rA A→ r r N>

Mobility can be calculated and by inverse FFT, taking the real part of the results, 

synthesized IRF can be calculated and compared to original time histories. [Ref. 5] 

 { }ˆ ˆReal of IFFT (  )h =� f Y∆       (50) 

G. CALCULATION OF RAYLEIGH DAMPING 

Using Rayleigh damping representation, the damping matrix can be represented 

as: 

   [ ] [ ] [ ]C Mα β= + K      (1) 

by using the mass normalized modal matrix [ ]φ , the damping matrix may we rewritten: 

  [ ] [ ][ ] [ ] [ ] 22T
r r rdiag diag

C Iφ φ ω ζ α β ω = = +      (51) 

By using equation (51) for all 2N modes, following 2N equations can be set. 
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2
1 1 1
2
2 2 2

2
2 2

2

2
          

2N N

α βω ω ζ

α βω ω ζ

2Nα βω ω ζ

+ =

+ =

+ =

#
      (52) 

or 

  [ ] { }2 12 2 NN
W

α
β

Z
××

 
= 

 
     (53) 

From equation (53), the two parameters α  and β  are calculated in a least squares 

solution by matrix pseudo-inversion. [Ref. 5] 

  [ ] [ ]( ) [ ] { }
1

2 12 2 2 2 2 2

T T

NN N N
W W W Z

α
β

−

×× × ×

 
= 

 
   (54) 
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III. EXPERIMENTAL SETUP 

A. EQUIPMENT DESCRIPTION 
The equipment used during testing was as follows: 

• 8.5 ft x 4 ft “Hull model” panel 

• 8.5 ft x 1.5 ft flat panel 

• Hewlett Packard 3562A Dynamic Signal Analyzer 

• PCB Piezotronics Modally Tuned Impact Hammer 

• PCB Piezotronics model 336C04 Accelerometers 

• PCB Piezotronics model 208C01 Force Sensor 

• PCB Piezotronics model 483B07 Power Unit Amplifier   

• MB Dynamics model A SS250VCF Amplifier 

• MB Dynamics Modal 50 Exciter 

• Modified PC computer with National Instruments “LabVIEW” software 

 

Experimental testing was conducted on a stiffened metal panel matching a ¼ scale 

section of generic warship hull structure.  The model plate was 4 ft by 8.5 ft, 11 gauge A-

36 steel and was stiffened length-wise and around the plate edges by 1 inch high 17 

gauge A-36 steel strips with 3 inch spacing from the edge of the plate and 6 inch periodic 

spacing between stiffeners.  Transverse stiffeners were 1.75 inch high 14 gauge A-36 

steel strips with 3 inch spacing from the edge and 24 inch periodic spacing.  Stiffeners 

were double filet welded to the plate.  The hull model was freely suspended from an H-

frame by a series of nylon straps hooked to steel rings welded to the structure. 
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3” 8.5 ft 
3” 

24” 

6”

1” 

1.75” 
 

    Figure 3. Schematic of hull model 

 
Figure 4. Photo of panel 

A section of flat panel 1.5 ft by 8.5 ft, of  4 gauge A-36 steel was tested to be used 

as a reference to compare with the behavior of the multi-weld “hull panel”.  The flat plate 

was similarly suspended by a series of bungee cords to simulate a free system 
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Figure 5. Schematic of Flat Panel model and photo of panel 

The Hewlett Packard 3562A Dynamic Signal Analyzer (DSA) was used to 

compute the frequency response of the panels and as a signal generator. The DSA is a 

dual-channel, fast Fourier transform-based network, spectrum and waveform analyzer 

that provides analysis capabilities in both the time and frequency domains.  Two input 

channel and a built –in signal source (noise and sine signals) can be used to perform 

spectrum analysis. The DSA has a frequency resolution of 25.6 µHz allowing the user to 

obtain highly accurate, high-resolution plots of the frequency responses of the mechanical 

system.  Single channel accuracy is 0.15±  dB with 80 dB of dynamic range [Ref. 6].  

The Piezotronics Modally Tuned Impact Hammer was the series 086B03 model.  

The modally tuned hammer is capable of exciting structural resonances up to 10 KHz and 

has a sensitivity of 10 mV/lbf.  The hammer converts a transfer force into an electrical 

signal which was then used by the DSA as the input response. The input signal was 

obtained from a force transducer on the head of the impact hammer. 

The Piezotronics model 336C04 Accelerometers are hermetically sealed, shear 

structured ICP accelerometers.  The accelerometers provide a 10 mV/g output over a 

frequency range from 1 to20,000 Hz ( 10%± ). 

PCB Piezotronics model 208C01 Force Sensor was used to measure exciter force 

input into the test panel.  The force sensor is an ICP Quartz Force Sensor and measures in 

a range from 10 lbf tension to 10 lbf compression with a sensitivity of 502.5 mV/lbf [Ref. 

7 and Ref 8]. 

The PCB Piezotronics model 483B07 Power Unit Amplifier is a 12 channel amplifier 

that used to amplify the signals from the force sensor and Accelerometers. 

The MB Dynamics model A SS250VCF Amplifier was the used to power the Modal 

50 Exciter and amplify the input signal into the Exciter. 
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The MB Dynamics Modal 50 Exciter is a lightweight permanent magnet shaker that 

provides 50 pounds dynamic force output.  The force output from the Exciter was 

transmitted to the panel through a steel rod threaded into the PCB Piezotronics force 

sensor that was bolted to the panel. 

A Personal Computer with a multi-channel input signal circuit board was used to take 

the signals from the force sensor and accelerometers via the PCB Piezotronics Power 

Unit Amplifier.  National Instruments “LabVIEW” software was used to pair the force 

sensor with each of the accelerometers and making fast Fourier transforms on the pairs to 

measure the magnitude/phase and real/imaginary frequency response and coherence of 

the single input multi-output system.  

 

B. EQUIPMENT SETUP  

1. Impact Testing 

For impact testing, the PCB modally tuned impact hammer was used to excite the 

model while accelerometers (PCB Piezotronics model 336C04) measured the structure’s 

response.  The impact hammer test was used to determine the frequency response of the 

model.  The model was impacted at the excitation point and accelerometer readings were 

taken at a variety of positions on the model.  The input and output signals were amplified 

by the PCB Power unit with input gain set at 1 and output gain set at 10.  The input and 

output signals were analyzed using the Dynamic Signal Analyzer (DSA), where the 

frequency response and coherency were measured.  The force-exponential window was 

used during the impact hammer test and 10 stable mean averages were used to obtain the 

frequency response.  The time record was set to trigger when the input signal from the 

hammer reached 0.5 volts.  Figure 6 shows the equipment setup for impact hammer 

testing. 
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Figure 6.  Equipment setup for Impact Hammer Testing 

 
2. Exciter Testing 

The Dynamic Signal Analyzer provided a 1 Volt random noise input signal 

throughout the range of 0-250 Hz via the MB Dynamics amplifier to the MB Dynamics 

Modal 50 Exciter to excite the panel.  The input and output signals were amplified by the 

PCB Piezotronics Power Unit Amplifier with gain set to 1 for all channels.   The input 

signal was measured by the PCB Piezotronics force sensor bolted to the panel to which 

the exciter’s steel rod was threaded into.  PCB Piezotronics accelerometers were used to 

measure the model response throughout the structure.  The signals of the input force 

sensor and the one output accelerometer were fed to the Digital Signal Analyzer for 

frequency response, and coherency measurement and the input signal and all 5 output 

signals were fed to the PC where the National Instruments “LabView” software to 

measure the magnitude/phase and real/imaginary frequency response and coherence.  10 

stable mean averages were used to obtain the model’s frequency response and frequency 

resolution was set to 0.05 Hz.  Results were saved as text files for further post-processing.  

Figure 7 shows a schematic of the experimental setup. 
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Output signals
Multi-Channel 
Rack 

Input signal
PC

Amplifier

Exciter

DSA
Random noise 
input signal Force Sensor

Accelerometers  
Figure 7. Equipment setup for Exciter Testing 

 
C. FINITE ELEMENT MODEL SIMULATION 

In an attempt to relate damping with the mode shape and natural frequency a 

finite element model was created for hull panel and flat plate.  The panel was modeled 

using 22092 quad 4 shell elements utilizing the MSC Patran/Nastran computer modeling 

system.  No attempt was made to simulate the actual weld of the structure, stiffener and 

panel surfaces were simply merged together using the equivalence command in Patran.  

Similarly, the flat plate was modeled using 29376 quad 4 shell elements. 
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IV. EXPERIMENTAL SETUP AND RESULTS 

A. IMPACT HAMMER TESTING  
A variety of tips of varying hardness were used with the impact hammer to find 

which tip produced the best coherence.  During testing, an acceptable level of coherency 

was not able to be achieved using any of the various tips for the impact hammer and 

impact hammer testing was abandoned in favor of shaker testing which produced much 

better levels of coherence. 

 
B. EXCITER TESTING 

1. Half-Power Point Method 
The Half-Power point method was used to make preliminary tests to find the 

effect damping across the welded panel.  For this initial testing the force gage and a 

single accelerometer were used as the input and output respectively.  Figure 7 displays 

the placement of the force gage and the various placements of the accelerometer across 

the panel for this preliminary testing. 

A H O V 

B I P W 

* C J Q X 

D K R Y 

E L S Z 

F M T AA 

G N U BB 

 
Figure 8.  Exciter (*) and Accelerometer (letters) Placement for Half-

Power Point Testing 
A 1 Volt random noise signal from the DSA was used as the input signal.  The 

testing frequency range was from 0 to 250 Hz and was averaged 15 times.  Figure 8 is a 

sample frequency plot of the hull panel response. 
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Through testing a resonant peak was found as approximately 113 Hz throughout 

the panel.  Using a zoom measurement of the 113 Hz frequency range, a more precise 

measurement of the resonance frequency nf , and the frequencies 1f  and 2f , 3 decibels 

below resonance before and after resonance respectively were found.  As discussed in the 

theory section previously, the damping ratio can now be calculated using equation (29) 

   2 1 2

2 2n n

1f f
f

ω ωζ
ω
− −

= =     (29) 

Table 1. Half-Power Point Testing Results 

2f =113.137 A 
2f = 113.05 H 

2f = 112.962 O 
2f = 113.1 V 

1f = 112.97 ζ = 0.00146 1f = 112.9 ζ = 0.00133 1f = 112.817 ζ = 0.00130 1f = 112.93 ζ = 0.00153 

nf = 113.3  
nf = 113.2  

nf = 113.11  
nf = 113.275  

2f = 113.162 B 
2f = 113.137 I 

2f = 113.112 P 
2f = 113.15 W 

1f = 113 ζ = 0.00137 1f = 112.987 ζ = 0.00130 1f = 112.968 ζ = 0.00133 1f = 113 ζ = 0.0013 

nf = 113.31  
nf = 113.281  

nf = 113.268  
nf = 113.312  

2f = 113.212 C 
2f = 113.137 J 

2f = 113.075 Q 
2f = 113.212 X 

1f = 113.03 ζ = 0.00158 1f = 112.975 ζ = 0.00144 1f = 112.9 ζ = 0.00155 1f = 113.037 ζ = 0.00199 

nf = 113.387  
nf = 113.3  

nf = 113.25 SHAKER 
nf = 113.487  

2f = 113.125 D 
2f = 113.162 K 

2f = 113.125 R 
2f = 113.175 Y 

1f = 112.95 ζ = 0.00133 1f = 113.06 ζ = 0.00117 1f = 112.969 ζ = 0.00138 1f = 113.018 ζ = 0.00138 

nf = 113.25  
nf = 113.325  

nf = 113.282  
nf = 113.331  

2f = 113.175 E 
2f = 113.062 L 

2f = 112.9 S 
2f = 113.175 Z 

1f = 113.012 ζ = 0.00133 1f = 112.906 ζ = 0.00134 1f = 112.73 ζ = 0.00147 1f = 113.025 ζ = 0.00133 

nf = 113.312  
nf = 113.21  

nf = 113.062  
nf = 113.325  

2f = 113.162 F 
2f = 113.175 M 

2f = 113.15 T 
2f = 113.137 AA 

1f = 113.06 ζ = 0.00119 1f = 113.018 ζ = 0.00136 1f = 113.018 ζ = 0.00125 1f = 112.975 ζ = 0.00144 

nf = 113.33  
nf = 113.325  

nf = 113.3  
nf = 113.3  

2f = 113.15 G 
2f = 113.1 N 

2f = 113.062 U 
2f = 113.137 BB 

1f = 112.98 ζ = 0.00146 1f = 112.94 ζ = 0.00137 1f = 112.9 ζ = 0.00137 1f = 112.98 ζ = 0.00141 

nf = 113.31  
nf = 113.25  

nf = 113.21  
nf = 113.3  

 

Table 1 shows the results of half-power point testing.  Of particular note is the 

over-all low level of damping throughout the structure, all positions displaying less the 

0.2% damping. 
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2. Modal Parameter Extraction  

For more robust analysis of the frequency dependence of damping as well as 

position in the panel (and thus the wave propagation through welds) the modal parameter 

extraction technique was used.  Similarly to the half-power point method, a 1 Volt 

random noise signal from the DSA was used as the input signal to the exciter. Two 

frequency ranges were tested, 0 to 250 Hz for a comprehensive look at vibration through 

the frequency range of interest and 0 to 20 Hz for a more studied examination of the 

lower frequencies. Frequency resolution of 0.05 Hz and 10 stable mean averages were 

used for both the broad band and narrow band tests.  Using the National Instruments 

“LabView” software on the PC, five accelerometers at a time (output signals) were 

processed with the input signal (force sensor) to find fast Fourier transforms, calculating 

magnitude/phase and real/imaginary frequency response and coherence for each 

input/output pair. The processed fast Fourier transforms results were saved as text files 

for post-processing and analysis of the FFT data. 

The modal parameter extraction and verification of extracted modal parameters 

techniques articulated in the theory section were used in a Fortan code to calculate the 

modal parameters of the position and regenerated the FFT curve using Microsoft 

Developer Studio’s Fortran PowerStation 4.0.  Mircocal Origin 6.0 was used to 

comparing the FFT curve and regenerated FFT curves.  The systems most resonant 

modes and their associated damping were found and then saved to an Excel spreadsheet 

for positional comparison of frequency dependant damping.  Figures 9 and 10 show an 

examples of resonant modes that were chosen for positional comparison. 
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Figure 9. Sample Frequency response and Regenerated Frequency response.  

Circled are strongly resonant modes that would be chosen for positional 
comparison. 
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Figure 10. Sample Frequency response and Regenerated Frequency response.  
Circled are strongly resonant modes that would be chosen for positional 
comparison. 
 

Rayleigh damping α  and β  for each position and the resulting curve fit was 

calculated as articulated in the Theory section by using the modal frequencies and 

damping ratios found.  MATLAB code was used to use calculate these damping 

coefficients and to plot the curve fit compared to measured damping. 

 

a. Horizontal Position Examination 

Positional relation of damping compared horizontally from the exciter is 

shown in Figure 11 
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1 16 31 46 

2 17 32 47 
3 18 33 48 
4 19 34 49 

5 20 35 50 

* 51 6 21 36
7 52 22 37

8 53 23 38

9 54 24 39

10 55 25 40
11 56 26 41
12 57 27 42

13 58 28 43
14 59 29 44

60 15 30 45

 
Figure 11. Horizontal Positions Compared 

 

The testing positions along the longitudinal stiffener (Positions 7, 22, 37, and 

52) and those off stiffener (Positions 6, 21, 36, and 51) were compared separately as 

show on figures 12 and 13 and then combined in figure 14. 
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Figure 12. Horizontal Weld Damping 
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Horizontal Off-Weld Damping
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Figure 13. Horizontal Off-Weld Damping 
 

Total Horizontal Damping
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Figure 14. Total Horizontal Damping 

As seen from Figures 12, 13 and 14 there is little difference in damping on or 

off the weld and little difference in damping in relation to testing position.  Damping as a 

general trend however, is frequency dependant displaying an exponential decay with 

frequency. 

The calculated Rayleigh damping α  and β  for each position are shown in 

Table 2 and the resulting curve fit compared to the original data points are shown in 

Figures 15, 16, 17, and 18. 
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Table 2. Rayleigh Damping Results for Horizontal Damping 

Position Alpha Beta 
6 0.5818 2.6823E-6 
7 0.5921 2.6804E-6 
21 0.7358 2.7782E-6 
22 0.7163 2.6219E-6 
36 0.5165 2.4298E-6 
37 0.6539 3.0721E-6 
51 0.6724 2.4508E-6 
52 0.6947 2.8037E-6 

 

The mean α  calculated for horizontal positions was 0.6454, with a standard 

deviation of 0.0755 and the mean β  calculated for horizontal positions was 2.6899E-6 

with a standard deviation of 2.0577E-7. 

 

 
Figure 15. Positional Damping Rayleigh Damping Curve-Fit 
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Figure 16. Positional Damping Rayleigh Damping Curve-Fit 

 

 
Figure 17. Positional Damping Rayleigh Damping Curve-Fit 
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Figure 18. Positional Damping Rayleigh Damping Curve-Fit 

 
b. Vertical Position Examination 

Positional relation of damping compared vertically near the exciter is shown 

in figure 19. 

46 31161 

47 32172 
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55 402510 
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58 2813 43
59 442914 
60 453015 

 
Figure 19. Vertical Positions Near Exciter Compared 
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The vertical testing positions near the exciter (Positions 21, 22, 23, 24, 25, and 

26) were compared on figure 20. 

Vertical Damping Near Exciter
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Figure 20. Vertical Damping Near Exciter 

Similarly to the Horizontal position examination, figure 20 shows there is 

little difference in relation to testing position and damping generally displayed an 

exponential decay with frequency. 

The calculated Rayleigh damping α  and β  for each position are shown in 

table 3 and the resulting curve fit compared to the original data points are shown in 

Figures 21, 22, and 23. 

 

Table 3. Rayleigh Damping Results for Vertical Damping Near Exciter 

Position Alpha Beta 
21 0.73580 2.7782E-6 
22 0.7163 2.6219E-6 
23 0.7376 2.4544E-6 
24 0.7332 2.7233E-6 
25 0.7361 2.3462E-6 
26 0.5428 2.4197E-6 
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The mean α  calculated for vertical positions near the exciter was 0.7003 , 

with a standard deviation of 0.0776 and the meanβ  calculated for vertical positions near 

the exciter was 2.5573E-6 with a standard deviation of 1.7586E-7. 

 

 
Figure 21. Positional Damping Rayleigh Damping Curve-Fit 
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Figure 22. Positional Damping Rayleigh Damping Curve-Fit 

 

 
Figure 23. Positional Damping Rayleigh Damping Curve-Fit 
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Positional relation of damping compared vertically far from the exciter is 

shown in figure 24 

1 16 31 46 

2 17 32 47 
3 18 33 48 
4 19 34 49 

5 20 35 50 

* 51 6 21 36
7 52 22 37

8 53 23 38

9 54 24 39

10 55 25 40
11 56 26 41
12 57 27 42

13 58 28 43
14 59 29 44

60 15 30 45

 
 

Figure 24. Vertical Positions Far from the Exciter Compared 
The vertical testing positions far from the exciter (Positions 51, 52, 53, 54, 55, 

and 56) are compared on figure 25. 
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Figure 25. Vertical Damping far from Exciter 
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Again, similar to the horizontal position examination and the vertical positions 

near the exciter, figure 25 shows there is little difference in relation to testing position 

and damping generally displayed an exponential decay with frequency. 

The calculated Rayleigh damping α  and β  for each position are shown in 

table 4 and the resulting curve fit compared to the original data points are shown in 

Figures 26, 27, and 28. 

 

Table 4. Rayleigh Damping Results for Vertical 
Damping Far From Exciter 

Position Alpha Beta 
51 0.6724 2.4508E-6 
52 0.6947 2.8037E-6 
53 0.7660 2.4185E-6 
54 0.7925 2.2097E-6 
55 0.8263 2.1606E-6 
56 0.5483 2.8479E-6 

 

The mean α  calculated for vertical positions near the exciter was 0.7167, 

with a standard deviation of 0.1010 and the meanβ  calculated for vertical positions near 

the exciter was 2.4819E-6 with a standard deviation of 2.8978E-7. 
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Figure 26. Positional Damping Rayleigh Damping Curve-Fit 

 

 
Figure 27. Positional Damping Rayleigh Damping Curve-Fit 
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Figure 28. Positional Damping Rayleigh Damping Curve-Fit 

The overall Rayleigh damping throughout the structure comparing all 

positions found a mean α  value of 0.6779, with a standard deviation of 0.0953 and a 

mean β  value of 2.5687E-6 with a standard deviation of 2.4747E-7. 

 

C. FINITE ELEMENT MODELING 
Using the MSC Patran/Nastran finite element modeling program, a finite element 

model was developed for the panel.  The attempt was to observe trends that would relate 

the mode shape of the panel with damping and natural frequency.  Table 5 shows the 

natural frequencies and mode shape numbers obtained from the finite element model. 

Table 5. FEM Calculated Natural Frequencies 

Mode Frequency (Hz) Mode Frequency (Hz) 
1 5.304 18 146.34 
2 11.988 19 148.58 
3 21.096 20 156.36 
4 32.2 21 159.06 
5 47.129 22 173.78 
6 60.35 23 178.34 
7 66.92 24 181.77 
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8 74.14 25 185.28 
9 82.477 26 186.47 
10 91.227 27 198.54 
11 93.094 28 204.16 
12 111.56 29 209.2 
13 122.25 30 211.3 
14 124.24 31 223.2 
15 129.95 32 225.1 
16 135.15 33 230.54 
17 143.79 34 241.91 

 

Table 6 shows FEM natural frequencies and modes that matched highly resonant 

experimental natural frequencies. 

 

Table 6. Comparison of FEM and Experimental Natural Frequencies 

FEM Mode 
Shape # 

FEM Natural 
Frequency (Hz) 

Experimental Natural 
Frequency (Hz) 

2 11.988 11.3-11.4 
3 21.096 24.4-24.6 
4 32.2 36.3 
7 66.92 66.3-66.6 
12 111.56 112.9-113.3 
24 181.77 183.0 
28 204.16 205.5-206.1 
29 209.2 208.5-208.9 
33 230.54 232.3-232.9 

 

Figures 29 to 33 show examples of mode shapes found by the FEM model that 

matched highly resonant experimental modes.  Flexural (transverse and longitudinal) and 

torsional mode shapes as well as combination mode shapes were all found to match with 

highly resonant experimental natural frequencies.  No type of mode shape was found to 

be preferential in highly resonant experimental natural frequencies. 
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Figure 29. FEM mode shape with natural frequency of 11.988 Hz 

 
Figure 30. FEM mode shape with natural frequency of 21.096 Hz 

 

 
Figure 31. FEM mode shape with natural frequency of 32.2 Hz 
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Figure 32. FEM mode shape with natural frequency of 66.92 Hz 

 

 
Figure 33. FEM mode shape with natural frequency of 209.2 Hz 

 

D. FLAT PLATE COMPARISON 
For reference to compare against the welded panel, the flat panel previously 

described in the experimental setup section was subjected to the same exciter testing and 

modal parameter extraction as the plate stiffened panel.  Figure 29 displays the placement 

of the force gage and accelerometers across the panel for this testing. 
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Figure 34.  Exciter and Accelerometer Placement for Flat Panel Testing 

 

The testing positions along the flat plate are compared in figure 30. 
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Figure 35. Flat Panel Damping 

As with the plate stiffened panel, damping there appears to be little difference in 

relation to testing position on the flat plate and damping generally displayed an 

exponential decay with frequency.  The difference between the flat plate and plate 

stiffened panel is the overall magnitude of damping for the flat plate is lower than the 

plate stiffened panel especially in lower frequencies (less the 50 Hz). 
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The calculated Rayleigh damping α  and β  for each position are shown in table 7 

and the resulting curve fit compared to the original data points are shown in Figures 30, 

31, and 32. 

 

Table 7. Rayleigh Damping Results for Flat Plate 
Position Alpha Beta 

1 0.3797 1.0395E-6 
2 0.3694 1.0657E-6 
3 0.3720 1.0353E-6 
4 0.3734 1.0320E-6 
5 0.3628 1.0215E-6 

 
The mean α  and β  calculated for horizontal positions were 0.3715 and 1.0388E-

6 respectively and standard deviations of 0.0062 and 1.6451E-8.  This agrees with the 

damping curves of figure 30, α  being about 55% the value of α  compared to the 

stiffened plate and β  being about 40% the value of β  compared to the stiffened pate. 

 

 
Figure 36. Positional Damping Rayleigh Damping Curve-Fit 
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Figure 37. Positional Damping Rayleigh Damping Curve-Fit 

 

 
Figure 38. Positional Damping Rayleigh Damping Curve-Fit 
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As with the plate stiffened panel, a finite element model was developed for the 

flat plate in an attempt to observe trends relating the mode shape of the panel with 

damping and natural frequency.  Table 8 shows the natural frequencies and mode shape 

numbers obtained from the finite element model. 

 

Table 8. FEM Calculated Flat Plate Natural Frequencies 
Mode Frequency (Hz) Mode Frequency (Hz) 

1 4.913 13 124.25 
2 13.596 14 152.84 
3 16.821 15 158.16 
4 26.772 16 164.4 
5 34.338 17 169.77 
6 44.436 18 178.29 
7 53.20 19 185.94 
8 66.603 20 196.43 
9 73.988 21 201.41 
10 93.247 22 219.41 
11 97.22 23 222.93 
12 123.38 24 243.22 

 
Table 9 shows FEM natural frequencies and modes that matched highly resonant 

experimental modes. 

 

Table 9. Comparison of Flat Plate FEM and Experimental Natural Frequencies 
FEM Mode 

Shape # 
FEM Natural 

Frequency (Hz) 
Experimental Natural 

Frequency (Hz) 
1 4.913 4.92 
2 13.596 13.45 
4 26.772 26.55 
6 44.436 44.07 
8 66.603 66.13 
10 93.247 92.71 
15 158.16 157.48 
16 164.4 164.49 
17 169.77 169.67 
18 178.29 177.83 
20 196.43 195.62 
21 201.41 200.55 
22 219.41 219.27 
24 243.22 242.26 
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The modes and frequencies of the FEM model closely matched all resonant 

modes of the flat plate found experimentally and only a few “false” modes were created 

by the FEM model.  This result confirmed the veracity of the FEM model but added no 

further insights into the relationship between welds and damping. 
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V. CONCLUSIONS AND RECOMENDATIONS 

The results of this damping study indicate that welds do increase the damping of 

structure and that Rayleigh damping is and appropriate model for its analysis.  The study 

results indicate that damping is relatively high in the low frequency domain while 

decreasing exponentially in the higher frequencies.  The damping from the welds 

increased the damping of the overall system but did not show any positional damping.  

Damping values found near the point of excitation were similar to damping values of 

positions separated from the point of excitation by multiple welds. 

This level of damping increase found compare to a bare, flat plate however is 

extremely small, with average Rayleigh damping coefficients of α = 0.6779 and 

β = 2.5687E-6 found.  From DDG-53 ship shock trial data, Rayleigh damping 

coefficients of α = 19.2 and β = 2.09E-6 were estimated for ship structural damping. 

[Ref. 9]  The minor increase in damping found due to welds in this study is unlikely to be 

a significant contributor to overall this ship structure damping found. 

Recommendations for future work into the study of the sources ship structural 

damping would be to attempt to find the damping effects of painting and lagging on the 

ship structure. 
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